How To Set Up Software RAID1 On A Running System (Incl. GRUB2 Configuration) (Debian Squeeze)
Version 1.0
Author: Falko Timme
Last edited 05/24/2011
This guide explains how to set up software RAID1 on an already running Debian Squeeze system. The GRUB2 bootloader will be configured in such a way that the system will still be able to boot if one of the hard drives fails (no matter which one).
I do not issue any guarantee that this will work for you!
1 Preliminary Note
In this tutorial I’m using a Debian Squeeze system with two hard drives, /dev/sda and /dev/sdb which are identical in size. /dev/sdb is currently unused, and /dev/sda has the following partitions:
- /dev/sda1: /boot partition, ext4;
- /dev/sda2: swap;
- /dev/sda3: / partition, ext4
In the end I want to have the following situation:
- /dev/md0 (made up of /dev/sda1 and /dev/sdb1): /boot partition, ext4;
- /dev/md1 (made up of /dev/sda2 and /dev/sdb2): swap;
- /dev/md2 (made up of /dev/sda3 and /dev/sdb3): / partition, ext4
This is the current situation:
df -h
root@server1:~# df -h
Filesystem Size Used Avail Use% Mounted on
/dev/sda3 4.0G 712M 3.1G 19% /
tmpfs 249M 0 249M 0% /lib/init/rw
udev 244M 100K 244M 1% /dev
tmpfs 249M 0 249M 0% /dev/shm
/dev/sda1 472M 25M 423M 6% /boot
root@server1:~#
fdisk -l
root@server1:~# fdisk -l
Disk /dev/sda: 5368 MB, 5368709120 bytes
255 heads, 63 sectors/track, 652 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x000b0ecb
Device Boot Start End Blocks Id System
/dev/sda1 * 1 63 498688 83 Linux
Partition 1 does not end on cylinder boundary.
/dev/sda2 63 125 499712 82 Linux swap / Solaris
Partition 2 does not end on cylinder boundary.
/dev/sda3 125 653 4242432 83 Linux
Partition 3 does not end on cylinder boundary.
Disk /dev/sdb: 5368 MB, 5368709120 bytes
255 heads, 63 sectors/track, 652 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x00000000
Disk /dev/sdb doesn’t contain a valid partition table
root@server1:~#
2 Installing mdadm
The most important tool for setting up RAID is mdadm. Let’s install it like this:
apt-get install initramfs-tools mdadm
MD arrays needed for the root file system: <– all
Afterwards, we load a few kernel modules (to avoid a reboot):
modprobe linear
modprobe multipath
modprobe raid0
modprobe raid1
modprobe raid5
modprobe raid6
modprobe raid10
Now run
cat /proc/mdstat
The output should look as follows:
root@server1:~# cat /proc/mdstat
Personalities : [linear] [multipath] [raid0] [raid1] [raid6] [raid5] [raid4] [raid10]
unused devices: <none>
root@server1:~#
3 Preparing /dev/sdb
To create a RAID1 array on our already running system, we must prepare the /dev/sdb hard drive for RAID1, then copy the contents of our /dev/sda hard drive to it, and finally add /dev/sda to the RAID1 array.
First, we copy the partition table from /dev/sda to /dev/sdb so that both disks have exactly the same layout:
sfdisk -d /dev/sda | sfdisk –force /dev/sdb
The output should be as follows:
root@server1:~# sfdisk -d /dev/sda | sfdisk –force /dev/sdb
Checking that no-one is using this disk right now …
OK
Disk /dev/sdb: 652 cylinders, 255 heads, 63 sectors/track
sfdisk: ERROR: sector 0 does not have an msdos signature
/dev/sdb: unrecognized partition table type
Old situation:
No partitions found
New situation:
Units = sectors of 512 bytes, counting from 0
Device Boot Start End #sectors Id System
/dev/sdb1 * 2048 999423 997376 83 Linux
/dev/sdb2 999424 1998847 999424 82 Linux swap / Solaris
/dev/sdb3 1998848 10483711 8484864 83 Linux
/dev/sdb4 0 – 0 0 Empty
Warning: partition 1 does not end at a cylinder boundary
Successfully wrote the new partition table
Re-reading the partition table …
If you created or changed a DOS partition, /dev/foo7, say, then use dd(1)
to zero the first 512 bytes: dd if=/dev/zero of=/dev/foo7 bs=512 count=1
(See fdisk(8).)
root@server1:~#
The command
fdisk -l
should now show that both HDDs have the same layout:
root@server1:~# fdisk -l
Disk /dev/sda: 5368 MB, 5368709120 bytes
255 heads, 63 sectors/track, 652 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x000b0ecb
Device Boot Start End Blocks Id System
/dev/sda1 * 1 63 498688 83 Linux
Partition 1 does not end on cylinder boundary.
/dev/sda2 63 125 499712 82 Linux swap / Solaris
Partition 2 does not end on cylinder boundary.
/dev/sda3 125 653 4242432 83 Linux
Partition 3 does not end on cylinder boundary.
Disk /dev/sdb: 5368 MB, 5368709120 bytes
255 heads, 63 sectors/track, 652 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x00000000
Device Boot Start End Blocks Id System
/dev/sdb1 * 1 63 498688 83 Linux
Partition 1 does not end on cylinder boundary.
/dev/sdb2 63 125 499712 82 Linux swap / Solaris
Partition 2 does not end on cylinder boundary.
/dev/sdb3 125 653 4242432 83 Linux
Partition 3 does not end on cylinder boundary.
root@server1:~#
Next we must change the partition type of our three partitions on /dev/sdb to Linux raid autodetect:
fdisk /dev/sdb
root@server1:~# fdisk /dev/sdb
WARNING: DOS-compatible mode is deprecated. It’s strongly recommended to
switch off the mode (command ‚c‘) and change display units to
sectors (command ‚u‘).
Command (m for help): <– m
Command action
a toggle a bootable flag
b edit bsd disklabel
c toggle the dos compatibility flag
d delete a partition
l list known partition types
m print this menu
n add a new partition
o create a new empty DOS partition table
p print the partition table
q quit without saving changes
s create a new empty Sun disklabel
t change a partition’s system id
u change display/entry units
v verify the partition table
w write table to disk and exit
x extra functionality (experts only)
Command (m for help): <– t
Partition number (1-4): <– 1
Hex code (type L to list codes): <– L
0 Empty 24 NEC DOS 81 Minix / old Lin bf Solaris
1 FAT12 39 Plan 9 82 Linux swap / So c1 DRDOS/sec (FAT-
2 XENIX root 3c PartitionMagic 83 Linux c4 DRDOS/sec (FAT-
3 XENIX usr 40 Venix 80286 84 OS/2 hidden C: c6 DRDOS/sec (FAT-
4 FAT16 <32M 41 PPC PReP Boot 85 Linux extended c7 Syrinx
5 Extended 42 SFS 86 NTFS volume set da Non-FS data
6 FAT16 4d QNX4.x 87 NTFS volume set db CP/M / CTOS / .
7 HPFS/NTFS 4e QNX4.x 2nd part 88 Linux plaintext de Dell Utility
8 AIX 4f QNX4.x 3rd part 8e Linux LVM df BootIt
9 AIX bootable 50 OnTrack DM 93 Amoeba e1 DOS access
a OS/2 Boot Manag 51 OnTrack DM6 Aux 94 Amoeba BBT e3 DOS R/O
b W95 FAT32 52 CP/M 9f BSD/OS e4 SpeedStor
c W95 FAT32 (LBA) 53 OnTrack DM6 Aux a0 IBM Thinkpad hi eb BeOS fs
e W95 FAT16 (LBA) 54 OnTrackDM6 a5 FreeBSD ee GPT
f W95 Ext’d (LBA) 55 EZ-Drive a6 OpenBSD ef EFI (FAT-12/16/
10 OPUS 56 Golden Bow a7 NeXTSTEP f0 Linux/PA-RISC b
11 Hidden FAT12 5c Priam Edisk a8 Darwin UFS f1 SpeedStor
12 Compaq diagnost 61 SpeedStor a9 NetBSD f4 SpeedStor
14 Hidden FAT16 <3 63 GNU HURD or Sys ab Darwin boot f2 DOS secondary
16 Hidden FAT16 64 Novell Netware af HFS / HFS+ fb VMware VMFS
17 Hidden HPFS/NTF 65 Novell Netware b7 BSDI fs fc VMware VMKCORE
18 AST SmartSleep 70 DiskSecure Mult b8 BSDI swap fd Linux raid auto
1b Hidden W95 FAT3 75 PC/IX bb Boot Wizard hid fe LANstep
1c Hidden W95 FAT3 80 Old Minix be Solaris boot ff BBT
1e Hidden W95 FAT1
Hex code (type L to list codes): <– fd
Changed system type of partition 1 to fd (Linux raid autodetect)
Command (m for help): <– t
Partition number (1-4): <– 2
Hex code (type L to list codes): <– fd
Changed system type of partition 2 to fd (Linux raid autodetect)
Command (m for help): <– t
Partition number (1-4): <– 3
Hex code (type L to list codes): <– fd
Changed system type of partition 3 to fd (Linux raid autodetect)
Command (m for help): <– w
The partition table has been altered!
Calling ioctl() to re-read partition table.
Syncing disks.
root@server1:~#
To make sure that there are no remains from previous RAID installations on /dev/sdb, we run the following commands:
mdadm –zero-superblock /dev/sdb1
mdadm –zero-superblock /dev/sdb2
mdadm –zero-superblock /dev/sdb3
If there are no remains from previous RAID installations, each of the above commands will throw an error like this one (which is nothing to worry about):
root@server1:~# mdadm –zero-superblock /dev/sdb1
mdadm: Unrecognised md component device – /dev/sdb1
root@server1:~#
Otherwise the commands will not display anything at all.
How To Set Up Software RAID1 On A Running System (Incl. GRUB2 Configuration) (Debian Squeeze) – Page 2
4 Creating Our RAID Arrays
Now let’s create our RAID arrays /dev/md0, /dev/md1, and /dev/md2. /dev/sdb1 will be added to /dev/md0, /dev/sdb2 to /dev/md1, and /dev/sdb3 to /dev/md2. /dev/sda1, /dev/sda2, and /dev/sda3 can’t be added right now (because the system is currently running on them), therefore we use the placeholder missing in the following three commands:
mdadm –create /dev/md0 –level=1 –raid-disks=2 missing /dev/sdb1
mdadm –create /dev/md1 –level=1 –raid-disks=2 missing /dev/sdb2
mdadm –create /dev/md2 –level=1 –raid-disks=2 missing /dev/sdb3
You might see the following message for each command – just press y to continue:
root@server1:~# mdadm –create /dev/md2 –level=1 –raid-disks=2 missing /dev/sdb3
mdadm: Note: this array has metadata at the start and
may not be suitable as a boot device. If you plan to
store ‚/boot‘ on this device please ensure that
your boot-loader understands md/v1.x metadata, or use
–metadata=0.90
Continue creating array? <– y
mdadm: Defaulting to version 1.2 metadata
mdadm: array /dev/md2 started.
root@server1:~#
The command
cat /proc/mdstat
should now show that you have three degraded RAID arrays ([_U] or [U_] means that an array is degraded while [UU] means that the array is ok):
root@server1:~# cat /proc/mdstat
Personalities : [linear] [multipath] [raid0] [raid1] [raid6] [raid5] [raid4] [raid10]
md2 : active raid1 sdb3[1]
4241396 blocks super 1.2 [2/1] [_U]
md1 : active raid1 sdb2[1]
499700 blocks super 1.2 [2/1] [_U]
md0 : active raid1 sdb1[1]
498676 blocks super 1.2 [2/1] [_U]
unused devices: <none>
root@server1:~#
Next we create filesystems on our RAID arrays (ext4 on /dev/md0 and /dev/md2 and swap on /dev/md1):
mkfs.ext4 /dev/md0
mkswap /dev/md1
mkfs.ext4 /dev/md2
Next we must adjust /etc/mdadm/mdadm.conf (which doesn’t contain any information about our new RAID arrays yet) to the new situation:
cp /etc/mdadm/mdadm.conf /etc/mdadm/mdadm.conf_orig
mdadm –examine –scan >> /etc/mdadm/mdadm.conf
Display the contents of the file:
cat /etc/mdadm/mdadm.conf
At the bottom of the file you should now see details about our three (degraded) RAID arrays:
# mdadm.conf # # Please refer to mdadm.conf(5) for information about this file. # # by default, scan all partitions (/proc/partitions) for MD superblocks. # alternatively, specify devices to scan, using wildcards if desired. DEVICE partitions # auto-create devices with Debian standard permissions CREATE owner=root group=disk mode=0660 auto=yes # automatically tag new arrays as belonging to the local system HOMEHOST <system> # instruct the monitoring daemon where to send mail alerts MAILADDR root # definitions of existing MD arrays # This file was auto-generated on Tue, 24 May 2011 14:09:09 +0200 # by mkconf 3.1.4-1+8efb9d1 ARRAY /dev/md/0 metadata=1.2 UUID=b40c3165:17089af7:5d5ee79b:8783491b name=server1.example.com:0 ARRAY /dev/md/1 metadata=1.2 UUID=62e4a606:878092a0:212209c5:c91b8fef name=server1.example.com:1 ARRAY /dev/md/2 metadata=1.2 UUID=94e51099:d8475c57:4ff1c60f:9488a09a name=server1.example.com:2 |
5 Adjusting The System To RAID1
Now let’s mount /dev/md0 and /dev/md2 (we don’t need to mount the swap array /dev/md1):
mkdir /mnt/md0
mkdir /mnt/md2
mount /dev/md0 /mnt/md0
mount /dev/md2 /mnt/md2
You should now find both arrays in the output of
mount
root@server1:~# mount
/dev/sda3 on / type ext4 (rw,errors=remount-ro)
tmpfs on /lib/init/rw type tmpfs (rw,nosuid,mode=0755)
proc on /proc type proc (rw,noexec,nosuid,nodev)
sysfs on /sys type sysfs (rw,noexec,nosuid,nodev)
udev on /dev type tmpfs (rw,mode=0755)
tmpfs on /dev/shm type tmpfs (rw,nosuid,nodev)
devpts on /dev/pts type devpts (rw,noexec,nosuid,gid=5,mode=620)
/dev/sda1 on /boot type ext4 (rw)
/dev/md0 on /mnt/md0 type ext4 (rw)
/dev/md2 on /mnt/md2 type ext4 (rw)
root@server1:~#
Next we modify /etc/fstab. Comment out the current /, /boot, and swap partitions and add new lines for them where you replace the UUIDs with /dev/md0 (for the /boot partition), /dev/md1 (for the swap partition) and /dev/md2 (for the / partition) so that the file looks as follows:
vi /etc/fstab
# /etc/fstab: static file system information. # # Use 'blkid' to print the universally unique identifier for a # device; this may be used with UUID= as a more robust way to name devices # that works even if disks are added and removed. See fstab(5). # # <file system> <mount point> <type> <options> <dump> <pass> proc /proc proc defaults 0 0 # / was on /dev/sda3 during installation #UUID=e4e38871-0115-477d-94f9-34b079d26248 / ext4 errors=remount-ro 0 1 /dev/md2 / ext4 errors=remount-ro 0 1 # /boot was on /dev/sda1 during installation #UUID=7e2fb013-073e-4312-a669-f34b35069bfb /boot ext4 defaults 0 2 /dev/md0 /boot ext4 defaults 0 2 # swap was on /dev/sda2 during installation #UUID=1a5951f8-d0ab-4e0e-b42a-871f81b6fd82 none swap sw 0 0 /dev/md1 none swap sw 0 0 /dev/scd0 /media/cdrom0 udf,iso9660 user,noauto 0 0 /dev/fd0 /media/floppy0 auto rw,user,noauto 0 0 |
Next replace /dev/sda1 with /dev/md0 and /dev/sda3 with /dev/md2 in /etc/mtab:
vi /etc/mtab
/dev/md2 / ext4 rw,errors=remount-ro 0 0 tmpfs /lib/init/rw tmpfs rw,nosuid,mode=0755 0 0 proc /proc proc rw,noexec,nosuid,nodev 0 0 sysfs /sys sysfs rw,noexec,nosuid,nodev 0 0 udev /dev tmpfs rw,mode=0755 0 0 tmpfs /dev/shm tmpfs rw,nosuid,nodev 0 0 devpts /dev/pts devpts rw,noexec,nosuid,gid=5,mode=620 0 0 /dev/md0 /boot ext4 rw 0 0 /dev/md0 /mnt/md0 ext4 rw 0 0 /dev/md2 /mnt/md2 ext4 rw 0 0 |
Now up to the GRUB2 boot loader. Create the file /etc/grub.d/09_swraid1_setup as follows:
cp /etc/grub.d/40_custom /etc/grub.d/09_swraid1_setup
vi /etc/grub.d/09_swraid1_setup
#!/bin/sh exec tail -n +3 $0 # This file provides an easy way to add custom menu entries. Simply type the # menu entries you want to add after this comment. Be careful not to change # the 'exec tail' line above. menuentry 'Debian GNU/Linux, with Linux 2.6.32-5-amd64' --class debian --class gnu-linux --class gnu --class os { insmod raid insmod mdraid insmod part_msdos insmod ext2 set root='(md/0)' echo 'Loading Linux 2.6.32-5-amd64 ...' linux /vmlinuz-2.6.32-5-amd64 root=/dev/md2 ro quiet echo 'Loading initial ramdisk ...' initrd /initrd.img-2.6.32-5-amd64 } |
Make sure you use the correct kernel version in the menuentry stanza (in the linux and initrd lines). You can find it out by running
uname -r
or by taking a look at the current menuentry stanzas in the ### BEGIN /etc/grub.d/10_linux ### section in /boot/grub/grub.cfg. Also make sure that you use root=/dev/md2 in the linux line.
The important part in our new menuentry stanza is the line set root='(md/0)‘ – it makes sure that we boot from our RAID1 array /dev/md0 (which will hold the /boot partition) instead of /dev/sda or /dev/sdb which is important if one of our hard drives fails – the system will still be able to boot.
Because we don’t use UUIDs anymore for our block devices, open /etc/default/grub…
vi /etc/default/grub
… and uncomment the line GRUB_DISABLE_LINUX_UUID=true:
# If you change this file, run 'update-grub' afterwards to update # /boot/grub/grub.cfg. GRUB_DEFAULT=0 GRUB_TIMEOUT=5 GRUB_DISTRIBUTOR=`lsb_release -i -s 2> /dev/null || echo Debian` GRUB_CMDLINE_LINUX_DEFAULT="quiet" GRUB_CMDLINE_LINUX="" # Uncomment to enable BadRAM filtering, modify to suit your needs # This works with Linux (no patch required) and with any kernel that obtains # the memory map information from GRUB (GNU Mach, kernel of FreeBSD ...) #GRUB_BADRAM="0x01234567,0xfefefefe,0x89abcdef,0xefefefef" # Uncomment to disable graphical terminal (grub-pc only) #GRUB_TERMINAL=console # The resolution used on graphical terminal # note that you can use only modes which your graphic card supports via VBE # you can see them in real GRUB with the command `vbeinfo' #GRUB_GFXMODE=640x480 # Uncomment if you don't want GRUB to pass "root=UUID=xxx" parameter to Linux GRUB_DISABLE_LINUX_UUID=true # Uncomment to disable generation of recovery mode menu entries #GRUB_DISABLE_LINUX_RECOVERY="true" # Uncomment to get a beep at grub start #GRUB_INIT_TUNE="480 440 1" |
Run
update-grub
to write our new kernel stanza from /etc/grub.d/09_swraid1_setup to /boot/grub/grub.cfg.
Next we adjust our ramdisk to the new situation:
update-initramfs -u
Now we copy the contents of /dev/sda1 and /dev/sda3 to /dev/md0 and /dev/md2 (which are mounted on /mnt/md0 and /mnt/md2):
cp -dpRx / /mnt/md2
cd /boot
cp -dpRx . /mnt/md0
6 Preparing GRUB2 (Part 1)
Afterwards we must make sure that the GRUB2 bootloader is installed on both hard drives, /dev/sda and /dev/sdb:
grub-install /dev/sda
grub-install /dev/sdb
Now we reboot the system and hope that it boots ok from our RAID arrays:
reboot
How To Set Up Software RAID1 On A Running System (Incl. GRUB2 Configuration) (Debian Squeeze) – Page 3
7 Preparing /dev/sda
If all goes well, you should now find /dev/md0 and /dev/md2 in the output of
df -h
root@server1:~# df -h
Filesystem Size Used Avail Use% Mounted on
/dev/md2 4.0G 714M 3.1G 19% /
tmpfs 249M 0 249M 0% /lib/init/rw
udev 244M 132K 244M 1% /dev
tmpfs 249M 0 249M 0% /dev/shm
/dev/md0 472M 25M 423M 6% /boot
root@server1:~#
The output of
cat /proc/mdstat
should be as follows:
root@server1:~# cat /proc/mdstat
Personalities : [raid1]
md2 : active raid1 sdb3[1]
4241396 blocks super 1.2 [2/1] [_U]
md1 : active (auto-read-only) raid1 sdb2[1]
499700 blocks super 1.2 [2/1] [_U]
md0 : active raid1 sdb1[1]
498676 blocks super 1.2 [2/1] [_U]
unused devices: <none>
root@server1:~#
Now we must change the partition types of our three partitions on /dev/sda to Linux raid autodetect as well:
fdisk /dev/sda
root@server1:~# fdisk /dev/sda
WARNING: DOS-compatible mode is deprecated. It’s strongly recommended to
switch off the mode (command ‚c‘) and change display units to
sectors (command ‚u‘).
Command (m for help): <– t
Partition number (1-4): <– 1
Hex code (type L to list codes): <– fd
Changed system type of partition 1 to fd (Linux raid autodetect)
Command (m for help): <– t
Partition number (1-4): <– 2
Hex code (type L to list codes): <– fd
Changed system type of partition 2 to fd (Linux raid autodetect)
Command (m for help): <– t
Partition number (1-4): <– 3
Hex code (type L to list codes): <– fd
Changed system type of partition 3 to fd (Linux raid autodetect)
Command (m for help): <– w
The partition table has been altered!
Calling ioctl() to re-read partition table.
Syncing disks.
root@server1:~#
Now we can add /dev/sda1, /dev/sda2, and /dev/sda3 to the respective RAID arrays:
mdadm –add /dev/md0 /dev/sda1
mdadm –add /dev/md1 /dev/sda2
mdadm –add /dev/md2 /dev/sda3
Now take a look at
cat /proc/mdstat
… and you should see that the RAID arrays are being synchronized:
root@server1:~# cat /proc/mdstat
Personalities : [raid1]
md2 : active raid1 sda3[2] sdb3[1]
4241396 blocks super 1.2 [2/1] [_U]
[==========>……….] recovery = 54.6% (2319808/4241396) finish=0.7min speed=45058K/sec
md1 : active raid1 sda2[2] sdb2[1]
499700 blocks super 1.2 [2/2] [UU]
md0 : active raid1 sda1[2] sdb1[1]
498676 blocks super 1.2 [2/2] [UU]
unused devices: <none>
root@server1:~#
(You can run
watch cat /proc/mdstat
to get an ongoing output of the process. To leave watch, press CTRL+C.)
Wait until the synchronization has finished (the output should then look like this:
root@server1:~# cat /proc/mdstat
Personalities : [raid1]
md2 : active raid1 sda3[2] sdb3[1]
4241396 blocks super 1.2 [2/2] [UU]
md1 : active raid1 sda2[2] sdb2[1]
499700 blocks super 1.2 [2/2] [UU]
md0 : active raid1 sda1[2] sdb1[1]
498676 blocks super 1.2 [2/2] [UU]
unused devices: <none>
root@server1:~#
).
Then adjust /etc/mdadm/mdadm.conf to the new situation:
cp /etc/mdadm/mdadm.conf_orig /etc/mdadm/mdadm.conf
mdadm –examine –scan >> /etc/mdadm/mdadm.conf
/etc/mdadm/mdadm.conf should now look something like this:
cat /etc/mdadm/mdadm.conf
# mdadm.conf # # Please refer to mdadm.conf(5) for information about this file. # # by default, scan all partitions (/proc/partitions) for MD superblocks. # alternatively, specify devices to scan, using wildcards if desired. DEVICE partitions # auto-create devices with Debian standard permissions CREATE owner=root group=disk mode=0660 auto=yes # automatically tag new arrays as belonging to the local system HOMEHOST <system> # instruct the monitoring daemon where to send mail alerts MAILADDR root # definitions of existing MD arrays # This file was auto-generated on Tue, 24 May 2011 14:09:09 +0200 # by mkconf 3.1.4-1+8efb9d1 ARRAY /dev/md/0 metadata=1.2 UUID=b40c3165:17089af7:5d5ee79b:8783491b name=server1.example.com:0 ARRAY /dev/md/1 metadata=1.2 UUID=62e4a606:878092a0:212209c5:c91b8fef name=server1.example.com:1 ARRAY /dev/md/2 metadata=1.2 UUID=94e51099:d8475c57:4ff1c60f:9488a09a name=server1.example.com:2 |
8 Preparing GRUB2 (Part 2)
Now we delete /etc/grub.d/09_swraid1_setup…
rm -f /etc/grub.d/09_swraid1_setup
… and update our GRUB2 bootloader configuration:
update-grub
update-initramfs -u
Now if you take a look at /boot/grub/grub.cfg, you should find that the menuentry stanzas in the ### BEGIN /etc/grub.d/10_linux ### section look pretty much the same as what we had in /etc/grub.d/09_swraid1_setup (they should now also be set to boot from /dev/md0 instead of (hd0) or (hd1)), that’s why we don’t need /etc/grub.d/09_swraid1_setup anymore.
Afterwards we must make sure that the GRUB2 bootloader is installed on both hard drives, /dev/sda and /dev/sdb:
grub-install /dev/sda
grub-install /dev/sdb
Reboot the system:
reboot
It should boot without problems.
That’s it – you’ve successfully set up software RAID1 on your running Debian Squeeze system!
How To Set Up Software RAID1 On A Running System (Incl. GRUB2 Configuration) (Debian Squeeze) – Page 4
9 Testing
Now let’s simulate a hard drive failure. It doesn’t matter if you select /dev/sda or /dev/sdb here. In this example I assume that /dev/sdb has failed.
To simulate the hard drive failure, you can either shut down the system and remove /dev/sdb from the system, or you (soft-)remove it like this:
mdadm –manage /dev/md0 –fail /dev/sdb1
mdadm –manage /dev/md1 –fail /dev/sdb2
mdadm –manage /dev/md2 –fail /dev/sdb3
mdadm –manage /dev/md0 –remove /dev/sdb1
mdadm –manage /dev/md1 –remove /dev/sdb2
mdadm –manage /dev/md2 –remove /dev/sdb3
Shut down the system:
shutdown -h now
Then put in a new /dev/sdb drive (if you simulate a failure of /dev/sda, you should now put /dev/sdb in /dev/sda‚s place and connect the new HDD as /dev/sdb!) and boot the system. It should still start without problems.
Now run
cat /proc/mdstat
and you should see that we have a degraded array:
root@server1:~# cat /proc/mdstat
Personalities : [raid1]
md2 : active raid1 sda3[2]
4241396 blocks super 1.2 [2/1] [U_]
md1 : active (auto-read-only) raid1 sda2[2]
499700 blocks super 1.2 [2/1] [U_]
md0 : active raid1 sda1[2]
498676 blocks super 1.2 [2/1] [U_]
unused devices: <none>
root@server1:~#
The output of
fdisk -l
should look as follows:
root@server1:~# fdisk -l
Disk /dev/sda: 5368 MB, 5368709120 bytes
255 heads, 63 sectors/track, 652 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x000e0f78
Device Boot Start End Blocks Id System
/dev/sda1 * 1 63 498688 fd Linux raid autodetect
Partition 1 does not end on cylinder boundary.
/dev/sda2 63 125 499712 fd Linux raid autodetect
Partition 2 does not end on cylinder boundary.
/dev/sda3 125 653 4242432 fd Linux raid autodetect
Partition 3 does not end on cylinder boundary.
Disk /dev/sdb: 5368 MB, 5368709120 bytes
255 heads, 63 sectors/track, 652 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x00000000
Disk /dev/sdb doesn’t contain a valid partition table
Disk /dev/md0: 510 MB, 510644224 bytes
2 heads, 4 sectors/track, 124669 cylinders
Units = cylinders of 8 * 512 = 4096 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x00000000
Disk /dev/md0 doesn’t contain a valid partition table
Disk /dev/md1: 511 MB, 511692800 bytes
2 heads, 4 sectors/track, 124925 cylinders
Units = cylinders of 8 * 512 = 4096 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x00000000
Disk /dev/md1 doesn’t contain a valid partition table
Disk /dev/md2: 4343 MB, 4343189504 bytes
2 heads, 4 sectors/track, 1060349 cylinders
Units = cylinders of 8 * 512 = 4096 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x00000000
Disk /dev/md2 doesn’t contain a valid partition table
root@server1:~#
Now we copy the partition table of /dev/sda to /dev/sdb:
sfdisk -d /dev/sda | sfdisk –force /dev/sdb
root@server1:~# sfdisk -d /dev/sda | sfdisk –force /dev/sdb
Checking that no-one is using this disk right now …
OK
Disk /dev/sdb: 652 cylinders, 255 heads, 63 sectors/track
sfdisk: ERROR: sector 0 does not have an msdos signature
/dev/sdb: unrecognized partition table type
Old situation:
No partitions found
New situation:
Units = sectors of 512 bytes, counting from 0
Device Boot Start End #sectors Id System
/dev/sdb1 * 2048 999423 997376 fd Linux raid autodetect
/dev/sdb2 999424 1998847 999424 fd Linux raid autodetect
/dev/sdb3 1998848 10483711 8484864 fd Linux raid autodetect
/dev/sdb4 0 – 0 0 Empty
Warning: partition 1 does not end at a cylinder boundary
Successfully wrote the new partition table
Re-reading the partition table …
If you created or changed a DOS partition, /dev/foo7, say, then use dd(1)
to zero the first 512 bytes: dd if=/dev/zero of=/dev/foo7 bs=512 count=1
(See fdisk(8).)
root@server1:~#
Afterwards we remove any remains of a previous RAID array from /dev/sdb…
mdadm –zero-superblock /dev/sdb1
mdadm –zero-superblock /dev/sdb2
mdadm –zero-superblock /dev/sdb3
… and add /dev/sdb to the RAID array:
mdadm -a /dev/md0 /dev/sdb1
mdadm -a /dev/md1 /dev/sdb2
mdadm -a /dev/md2 /dev/sdb3
Now take a look at
cat /proc/mdstat
root@server1:~# cat /proc/mdstat
Personalities : [raid1]
md2 : active raid1 sdb3[3] sda3[2]
4241396 blocks super 1.2 [2/1] [U_]
[======>…………..] recovery = 32.2% (1367168/4241396) finish=1.0min speed=44102K/sec
md1 : active raid1 sdb2[3] sda2[2]
499700 blocks super 1.2 [2/2] [UU]
md0 : active raid1 sdb1[3] sda1[2]
498676 blocks super 1.2 [2/2] [UU]
unused devices: <none>
root@server1:~#
Wait until the synchronization has finished:
root@server1:~# cat /proc/mdstat
Personalities : [raid1]
md2 : active raid1 sdb3[3] sda3[2]
4241396 blocks super 1.2 [2/2] [UU]
md1 : active raid1 sdb2[3] sda2[2]
499700 blocks super 1.2 [2/2] [UU]
md0 : active raid1 sdb1[3] sda1[2]
498676 blocks super 1.2 [2/2] [UU]
unused devices: <none>
root@server1:~#
Then install the bootloader on both HDDs:
grub-install /dev/sda
grub-install /dev/sdb
That’s it. You’ve just replaced a failed hard drive in your RAID1 array.
10 Links
- The Software-RAID Howto: http://tldp.org/HOWTO/Software-RAID-HOWTO.html